Author Affiliations
Abstract
1 Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
2 The State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
We evaluate the effects of the holes geometry drilled by a femtosecond laser on a stainless alloy with various defocused irradiation time, which ranges from 0 min to 1 h. The laser ablation efficiency is increased by a factor of 3 when the irradiation time is elevated from 0 to 30 min. Also, the morphology of the hole is observed by a scanning electron microscope, where the result indicates that the defocused irradiation time has a significant influence on the morphology changes. The reason for such changes is discussed based on the pretreatment effect and the confined plasma plume. As an application example, the microchannel is fabricated by a femtosecond laser combined with the defocused irradiation to demonstrate the advantage of the proposed method in fabricating functional structures.
140.0140 Lasers and laser optics 
Chinese Optics Letters
2018, 16(1): 011401
Author Affiliations
Abstract
State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
We propose a high temperature-sensitive long period fiber grating (LPFG) sensor fabricated by using the femtosecond laser transversal-scanning method. The femtosecond pulses scan over the whole fiber core and some part of the cladding region; the modified regions are more extended. It is found that the LPFG-I fabricated by the transversal-scanning method shows higher temperature sensitivity and better temperature uniformity than that of LPFG-II written by the femtosecond laser point-by-point method. The LPFG-I with a temperature sensitivity of 75.96 pm/°C in the range of 25°C–400°C is measured. Moreover, in the range from 400°C to 800°C, a higher temperature sensitivity of 148.64 pm/°C and good linearity of 0.99 are achieved, while the temperature sensitivity of LPFG-II is only 95.55 pm/°C. LPFG-I exhibits better temperature characteristics, which, to the best of our knowledge, has the highest sensitivity in silica fiber temperature sensors.
060.0060 Fiber optics and optical communications 060.2370 Fiber optics sensors 140.7090 Ultrafast lasers 
Chinese Optics Letters
2017, 15(9): 090602
Author Affiliations
Abstract
State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
The optical constants, photoluminescence properties, and resistivity of Al-Alq3 thin films prepared by the thermal co-evaporation method on a silicon substrate are studied with various Al fractions. A variable angle spectroscopic ellipsometry is employed to determine the optical constants in the wavelength from 300 to 1200 nm at incidence angles of 65°, 70°, and 75°, respectively. Both the refractive indices and extinction coefficient apparently increase with increasing Al fractions. The intensity of photoluminescence spectra gradually increases with decreasing Al fractions due to intrinsic energy level transition of Alq3 organic semiconductor in the ultraviolet wave band. The resistivity decreases from 42.1 to 3.36 Ω·cm with increasing Al fraction from 40% to 70%, resulting in a larger emission intensity in photoluminescence spectra for the 40% Al fraction sample.
160.4890 Organic materials 120.2130 Ellipsometry and polarimetry 
Chinese Optics Letters
2017, 15(11): 111602
宋雨欣 1,2,*银恺 1,2董欣然 1,2
作者单位
摘要
1 中南大学 高性能复杂制造国家重点实验室, 湖南 长沙 410083
2 中南大学机电工程学院, 湖南 长沙 410083
ZnS材料具有良好的光学和电学性能, 是一种重要的半导体材料, 在电学, 光学和催化领域有巨大的应用前景。研究了飞秒激光能量和扫描速度对ZnS表面形貌及其疏水性能的影响规律。研究发现, 随着激光能量增加沟槽深度和宽度增加, 同时沟槽深度变化更为显著; 扫描速度减小时, 沟槽深度和宽度增加, 沟槽边缘质量更好。在此基础上, 研究了扫描速度对ZnS表面湿润特性的影响。实验结果表明, 扫描速度越小, 沟槽形貌越粗糙, 其表面疏水性能更强, 实验获得的最大疏水角为140°。
飞秒激光 激光能量 扫描速度 表面形貌 疏水性能 ZnS ZnS femtosecond pulse laser laser energy scanning speed surface morphology hydrophobic property 
应用激光
2017, 37(3): 398

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!